Algebraic Curves: Solutions sheet 1

April 3, 2024

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let $n \ge 1$ and $I, J \subseteq k[X_0, \dots, X_n]$ be ideals. For $d \ge 0$ we denote by $k[X_0, \dots, X_n]_d$ the subspace of forms of degree d and $I_d = I \cap k[X_0, \dots, X_n]_d$ (resp. $J_d = J \cap k[X_0, \dots, X_n]_d$). Show that:

- 1. If I, J are homogeneous, then I + J, IJ and rad(I) are homogeneous.
- 2. If I is homogeneous, I is prime if, and only if, for all homogeneous $f, g \in k[X_0, ..., X_n], fg \in I \Rightarrow f \in I$ or $g \in I$.
- 3. I is homogeneous if, and only if, $I = \bigoplus_{d \geq 0} I_d$ (the right-hand side being a direct sum of abelian groups). Give an example of how this fails for non-homogeneous ideals.
- 4. If I is homogeneous, then there is a well-defined notion of forms of degree d in $\Gamma = k[X_0, \dots, X_n]/I$ and the corresponding spaces Γ_d , $d \geq 0$ are finite-dimensional over k.

Solution 1.

1. Assume I, J homogenous. Fix homogenous generators f_1, \ldots, f_n of I and g_1, \ldots, g_n of J. Then

$$I + J = \langle f_i, g_j \mid i, j \rangle$$

$$IJ = \langle f_i g_i \mid i, j \rangle$$

are also homogenous, as products of homogenous polynomials are also homogenous. We can delay the proof for Rad(I) at question (3).

2. Clearly, I prime implies for all homogeneous $f, g \in k[X_0, \dots, X_n], fg \in I \Rightarrow f \in I$ or $g \in I$.

Now suppose that I is an homogenous polynomial, such that for all homogeneous $f,g \in k[X_0,\ldots,X_n]$, $fg \in I \Rightarrow f \in I$ or $g \in I$. Let $f,g \in k[X_0,\ldots,X_n]$ such that $fg \in I$. Take their decomposition in homogenous component $f = \sum_{i=0}^k f_i$ and $g = \sum_{i=0}^{k'} g_i$. Here f_i,g_i are homogenous of degree i. Now $f_kg_{k'}$ is homogenous of degree kk'. It is also the highest degree homogenous component of fg. As I is homogenous, (using (3)) $f_kg_{k'} \in I$. Now using the assumption, either f_k or g_k is in I. Suppose $f_k \notin I$. Then the degree kk' - 1 homogenous component of fg is $f_kg_{k'-1} + g_{k'}f_{k-1} \in I$. $g_k \in I$ implies that $f_kg_{k'-1} \in I$. By assumption, $g_{k'-1} \in I$. The proof finishes after k such iterations of the same argument.

3. This part is the key characterisation of homogenous polynomials. It means that I is homogenous if and only if, for all $f \in I$, homogenous components f_j of f are in I.

It fails for non homogenous polynomial: take $J=\langle y-x^2\rangle\subset k[x,y]$. Then y and x^2 are homogenous components of an element of J but they are not in J.

Suppose that I is generated by a set of homogenous polynomial $\{h_i \mid i \in I\}$. Suppose $f \in I$. Take its decomposition of $f = \sum_j f_j$ into homogenous components. f also decomposes as $\sum_i a_i h_i$. As h_i 's are homogenous, it is easy to see that $f_j = \sum_{i'} a_{i'} h_{i'}$ and thus $f_j \in I$.

Suppose that I is an ideal, such that for all $f \in I$, if $f = \sum_j f_j$ is its decomposition in homogenous component, then for all $j, f_j \in I$.

Now we can finish to prove that if I homogenous implies Rad(I) homogenous. Let $f \in Rad(I)$, with homogenous decomposition $f = \sum_{j=0}^{d} f_j$. There is an $n \geq 0$ such that $f^n \in I$. Now the highest degree homogenous component of f^n is just f_d^n . So $f_d^n \in I$, so $f_d \in Rad(I)$. Now just conclude by induction on degree, using that nox $f - f_d \in Rad(I)$.

4. The decomposition $I = \bigoplus I_d$ respect the grading of $k[X_0, \ldots, X_n]$, meaning $I_d \subset k[X_0, \ldots, X_n]_d$. It is a general fact of modules (to check) that in this case quotient commutes with direct sum. $\Gamma_d = k[X_0, \ldots, X_n]_d/I_d$ is finite dimensional because $k[X_0, \ldots, X_n]_d$ is.

Exercise 2. Let R = k[X, Y, Z] and $F \in R$ be an irreducible form of degree $n \ge 1$. Consider $V = V(F) \subseteq \mathbb{P}^2_k$ and $\Gamma = R/(F)$. For $d \ge 0$, we denote by Γ_d the subspace of forms of degree d in Γ (see previous exercise).

- 1. Construct an exact sequence $0 \to R \stackrel{\times F}{\to} R \to \Gamma \to 0$, where $\times F$ denotes multiplication by F in R.
- 2. Show that, for d > n:

$$dim_k(\Gamma_d) = dn - \frac{n(n-3)}{2}$$

Solution 2.

- 1. To show that $0 \to R \stackrel{\times F}{\to} R \to \Gamma \to 0$ is exact, we can say that :
 - $R \to R$, $f \mapsto f \cdot F$ defines a group morphism, injective since $F \neq 0$ and R is a domain. The image is (F).
 - (F) is the kernel of the quotient map $R \to \Gamma$. Quotient maps are always surjective.
- 2. We can refine the previous sequence with the grading : $0 \to R_{d-n} \stackrel{\times F}{\to} R_d \to \Gamma_d \to 0$. Now $dim_k(\Gamma_d) = dim_k(R_d) dim_k(R_{d-n})$. The dimension of forms of degree d in $k[X_0, \ldots, X_N]$ is given by $\binom{d+N-1}{N-1}$.

Indeed, a choice of an element of the basis is given by choosing the position of N-1 bars in d+N-1 locations (stars). For example, "**|*|*" would represent the 4-form x^2yz .

Now $\binom{d+2}{2} - \binom{d-n+2}{2}$ gives the desired expression.

Exercise 3. Let $V = V(Y - X^2, Z - X^3) \subseteq \mathbb{A}^3_k$. Show that:

- 1. $I(V) = (Y X^2, Z X^3)$.
- 2. $ZW XY \in I(V)^* \subseteq k[X, Y, Z, W]$, but $ZW XY \notin ((Y X^2)^*, (Z X^3)^*)$.

In particular, this shows that, for $F_1, \ldots, F_r \in k[X_1, \ldots, X_n]$, the following inclusion can be strict: $(F_1^*, \ldots, F_r^*) \subseteq (F_1, \ldots, F_r)^*$.

Solution 3.

- 1. Set $I = (Y X^2, Z X^3)$. Since $k[X, Y, Z]/I \simeq k[X]$ is reduced I is radical, hence I = I(V).
- 2. $Z XY = Z X^3 X(Y X^2) \in I$, so $ZW XY \in I^*$. However, $(Y - X^2)^* = WY - X^2$, $(Z - X^3)^* = W^2Z - X^3$. It follows that for $f \in ((Y - X^2)^*, (Z - X^3)^*)$, all monomial in Y of f are divisible by W, X^2 or X^3 . Hence $ZW - XY \notin ((Y - X^2)^*, (Z - X^3)^*)$

Exercise 4. Let $n \geq 1$ and $T: \mathbb{A}_k^{n+1} \to \mathbb{A}_k^{n+1}$ be a linear change of coordinates (i.e. a linear automorphism of k^{n+1}). As it preserves lines through the origin it induces $T: \mathbb{P}_k^n \to \mathbb{P}_k^n$, what we call a *projective change of coordinates*.

- 1. Show, that one can send any n+1 points in \mathbb{P}^n not lying on a hyperplane to any other n+1 points not lying on a hyperplane via a linear change of coordinates.
- 2. Formulate and prove a similar statement for hyperplanes instead of points.

Solution 4.

1. Let $S = \{P_1, \dots, P_{n+1}\}$ be a set of n+1 points not lying on a hyperplane. It allows us to lift S to a k-basis \hat{S} of k^{n+1} . Indeed, if there is a linear relation $\hat{P}_{n+1} = \sum_i a_i \hat{P}_i$. Consider $H = Vect(P_1, \dots, P_n) \subset k^{n+1}$. H preserves lines so it induces a linear subspace $h \subset \mathbb{P}^n$, contained in a hyperplane. Then S is contained in h which contradicts the hypothesis. The same work for the target points, whose induced basis of k^{n+1} is denoted \hat{T}

Now, it suffices to take the matrix $A \in \mathsf{GL}_n$ which sends \hat{S} to \hat{T} . Using the short exact sequence

$$0 \to k^* \stackrel{\lambda \mapsto \lambda I_n}{\longrightarrow} GL_n \to PGL_n \to 0$$

we get the desired linear linear change of coordinate $\bar{A} \in PGL_n$

2. There is a duality isomorphism $\mathbb{P}^n \simeq (\mathbb{P}^n)^*$, where $(\mathbb{P}^n)^*$ parametrises hyperplanes in \mathbb{P}^n .

$$[y_0, \ldots, y_n] \mapsto H : y_0 X_0 + \cdots + y_n Y_n = 0$$

The duality transform the condition "n+1 points not lying on a hyperplane" into "n+1 hyperplanes whose (global) intersection is empty" We can verify it as follows. Let $P = [x_0, \ldots, x_n] \in \bigcap_{i=0}^n h_i$ with h_i hyperplanes, defined by the equation

$$h_i : a_{i,0}X_0 + \dots + a_{i,n}X_n = 0$$

Now, we get

$$a_{0,0}x_0 + \cdots + a_{0,n}x_n$$

. . .

$$a_{n,0}x_0 + \dots + a_{n,n}x_n$$

Then the n+1 points $A_i = [a_{i,0}, \ldots, a_{i,n}]$ are all contained in the hyperplane

$$H : x_0 X_0 + \dots + x_n X_n = 0$$

Exercise 5. Show that any two distinct lines in \mathbb{P}^2_k intersect in one point.

Solution 5. Let L and L' be lines defined by the (homogenous) equation

$$ax + by + cz = 0$$

$$a'x + b'y + c'z = 0$$

Assume without lost of generality that $a \neq 0$ and $b' \neq -a^{-1}b$. Then, $x = a^{-1}(by + cz)$

$$y = \frac{-a^{-1}c + c'}{a^{-1}b + b'}z$$

and similarly

$$x = \left(\frac{-a^{-1}c + c'}{a^{-1}b + b'} + a^{-1}c\right)z$$

This defines a unique point in \mathbb{P}^2_k .

Exercise 6. Let $m, n \ge 1$ and N = (n+1)(m+1) - 1 = mn + m + n. We consider \mathbb{P}_k^n with projective coordinates X_0, \ldots, X_n , \mathbb{P}_k^m with projective coordinates Y_0, \ldots, Y_m and \mathbb{P}_k^N with projective coordinates $T_{00}, T_{01}, \ldots, T_{0m}, T_{10}, \ldots, T_{nm}$. We also denote the affine coverings of \mathbb{P}_k^n , \mathbb{P}_k^m , associated to these coordinates as follows: $U_i = \{X_i \ne 0\}$, $V_j = \{Y_j \ne 0\}$ and $W_{ij} = \{T_{ij} \ne 0\}$.

Define the Segre embedding $S: \mathbb{P}^n_k \times \mathbb{P}^m_k \to \mathbb{P}^N_k$ by the formula:

$$S([x_0:\ldots:x_n],[y_0:\ldots:y_m]) = [x_0y_0:x_0y_1:\ldots:x_ny_m]$$

- 1. Show that S is well-defined and injective.
- 2. Let $Z = V(T_{ij}T_{kl} T_{il}T_{kj}, \ 0 \le i, k \le n, \ 0 \le j, l \le m) \subseteq \mathbb{P}_k^N$. Show that $S(\mathbb{P}_k^n \times \mathbb{P}_k^m) = Z$ (more specifically, $S(U_i \times V_j) = Z \cap W_{ij}$ for all i, j).
- 3. Show that the topology induced on $\mathbb{P}^n_k \times \mathbb{P}^m_k$ by the Zariski topology of \mathbb{P}^N_k via the Segre embedding is different from the product topology.

Solution 6.

1. Well defined: the embedding is bilinear on each coefficient.

Injective: Assume S(x,y) = S(x',y'). Without lost of generality, assume $x_0 = 1$. Take j such that $y_j \neq 0$. then $x_0y_j = x'_0y'_j \neq 0$. Then $x'_0 = \lambda \neq 0$. Then for all i, $y'_i = \lambda y_i$ so y = y'. Apply the same argument to y_j to get x = x'.

2. If $x_i \neq 0$, $y_j \neq 0$ then $S(x,y)_{ij} = x_i y_j \neq 0$. Hence $S(U_i \cap V_j) \subset W_{ij}$.

For the reverse inclusion, let $z = [z_{00}, z_{01}, \dots, z_{mn}]$ There is i, j such that $z_{ij} \neq 0$. WLOG assume $z_{ij} = 1$. Set for all i',

$$x_{i'} = z_{i'j}$$

and for all j',

$$y_{j'} = z_{ij'}$$

Using that

$$z_{ij}z_{i'j'}=z_{i'j}z_{ij'}$$

we get that $z_{i'j'} = x_{i'}y_{j'}$. This shows $W_{ij} \subset S(U_i \cap V_j)$.

3. We can mimic the familiar example of the diagonal in $\Delta \subset X \times X$, using the inclusion of one projective space in another, i.e. $\mathbb{P}^n \hookrightarrow \mathbb{P}^m$ with $n \leq m$. The image of this "diagonal" is closed in the Zariski topology of \mathbb{P}^N_k but not in the product topology.