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April 3, 2024

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let n ≥ 1 and I, J ⊆ k[X0, . . . , Xn] be ideals. For d ≥ 0 we denote by k[X0, . . . , Xn]d the subspace of

forms of degree d and Id = I ∩ k[X0, . . . , Xn]d (resp. Jd = J ∩ k[X0, . . . , Xn]d). Show that:

1. If I, J are homogeneous, then I + J , IJ and rad(I) are homogeneous.

2. If I is homogeneous, I is prime if, and only if, for all homogeneous f, g ∈ k[X0, . . . , Xn], fg ∈ I ⇒ f ∈ I or g ∈
I.

3. I is homogeneous if, and only if, I =
⊕

d≥0 Id (the right-hand side being a direct sum of abelian groups).

Give an example of how this fails for non-homogeneous ideals.

4. If I is homogeneous, then there is a well-defined notion of forms of degree d in Γ = k[X0, . . . , Xn]/I and the

corresponding spaces Γd, d ≥ 0 are finite-dimensional over k.

Solution 1.

1. Assume I, J homogenous. Fix homogenous generators f1, . . . , fn of I and g1, . . . , gn of J . Then

I + J = ⟨fi, gj | i, j⟩

IJ = ⟨figj | i, j⟩

are also homogenous, as products of homogenous polynomials are also homogenous. We can delay the proof

for Rad(I) at question (3).

2. Clearly, I prime implies for all homogeneous f, g ∈ k[X0, . . . , Xn], fg ∈ I ⇒ f ∈ I or g ∈ I.

Now suppose that I is an homogenous polynomial, such that for all homogeneous f, g ∈ k[X0, . . . , Xn],

fg ∈ I ⇒ f ∈ I or g ∈ I. Let f, g ∈ k[X0, . . . , Xn] such that fg ∈ I. Take their decomposition in homogenous

component f =
∑k

i=0 fi and g =
∑k′

i=0 gi. Here fi, gi are homogenous of degree i. Now fkgk′ is homogenous

of degree kk′. It is also the highest degree homogenous component of fg. As I is homogenous, (using (3))

fkgk′ ∈ I. Now using the assumption, either fk or gk is in I. Suppose fk /∈ I. Then the degree kk′ − 1

homogenous component of fg is fkgk′−1 + gk′fk−1 ∈ I. gk ∈ I implies that fkgk′−1 ∈ I. By assumption,

gk′−1 ∈ I. The proof finishes after k such iterations of the same argument.

1



3. This part is the key characterisation of homogenous polynomials. It means that I is homogenous if and only

if, for all f ∈ I, homogenous components fj of f are in I.

It fails for non homogenous polynomial : take J = ⟨y − x2⟩ ⊂ k[x, y]. Then y and x2 are homogenous

components of an element of J but they are not in J .

Suppose that I is generated by a set of homogenous polynomial {hi | i ∈ I}. Suppose f ∈ I. Take its

decomposition of f =
∑

j fj into homogenous components. f also decomposes as
∑

i aihi. As hi’s are

homogenous, it is easy to see that fj =
∑

i′ ai′hi′ and thus fj ∈ I.

Suppose that I is an ideal, such that for all f ∈ I, if f =
∑

j fj is its decomposition in homogenous component,

then for all j, fj ∈ I.

Now we can finish to prove that if I homogenous implies Rad(I) homogenous. Let f ∈ Rad(I), with homoge-

nous decomposition f =
∑d

j=0 fj . There is an n ≥ 0 such that fn ∈ I. Now the highest degree homogenous

component of fn is just fn
d . So fn

d ∈ I, so fd ∈ Rad(I). Now just conclude by induction on degree, using that

nox f − fd ∈ Rad(I).

4. The decomposition I = ⊕Id respect the grading of k[X0, . . . , Xn, meaning Id ⊂ k[X0, . . . , Xn]d. It is a general

fact of modules (to check) that in this case quotient commutes with direct sum. Γd = k[X0, . . . , Xn]d/Id is

finite dimensional because k[X0, . . . , Xn]d is.

Exercise 2. Let R = k[X,Y, Z] and F ∈ R be an irreducible form of degree n ≥ 1. Consider V = V (F ) ⊆ P2
k and

Γ = R/(F ). For d ≥ 0, we denote by Γd the subspace of forms of degree d in Γ (see previous exercise).

1. Construct an exact sequence 0 → R
×F→ R → Γ → 0, where ×F denotes multiplication by F in R.

2. Show that, for d > n:

dimk(Γd) = dn− n(n− 3)
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Solution 2.

1. To show that 0 → R
×F→ R → Γ → 0 is exact, we can say that :

• R → R, f 7→ f ·F defines a group morphism, injective since F ̸= 0 and R is a domain. The image is (F ).

• (F ) is the kernel of the quotient map R → Γ. Quotient maps are always surjective.

2. We can refine the previous sequence with the grading : 0 → Rd−n
×F→ Rd → Γd → 0. Now dimk(Γd) =

dimk(Rd)− dimk(Rd−n). The dimension of forms of degree d in k[X0, . . . , XN ] is given by
(
d+N−1
N−1

)
.

Indeed, a choice of an element of the basis is given by choosing the position of N−1 bars in d+N−1 locations

(stars). For example, ” ∗ ∗| ∗ | ∗ ” would represent the 4−form x2yz.

Now
(
d+2
2

)
−
(
d−n+2

2

)
gives the desired expression.

Exercise 3. Let V = V (Y −X2, Z −X3) ⊆ A3
k. Show that:

1. I(V ) = (Y −X2, Z −X3).

2. ZW −XY ∈ I(V )∗ ⊆ k[X,Y, Z,W ], but ZW −XY /∈ ((Y −X2)∗, (Z −X3)∗).
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In particular, this shows that, for F1, . . . Fr ∈ k[X1, . . . , Xn], the following inclusion can be strict: (F ∗
1 , . . . , F

∗
r ) ⊆

(F1, . . . , Fr)
∗.

Solution 3.

1. Set I = (Y −X2, Z −X3). Since k[X,Y, Z]/I ≃ k[X] is reduced I is radical, hence I = I(V ).

2. Z −XY = Z −X3 −X(Y −X2) ∈ I, so ZW −XY ∈ I∗.

However, (Y −X2)∗ = WY −X2, (Z −X3)∗ = W 2Z −X3. It follows that for f ∈ ((Y −X2)∗, (Z −X3)∗),

all monomial in Y of f are divisible by W,X2 or X3. Hence ZW −XY /∈ ((Y −X2)∗, (Z −X3)∗)

Exercise 4. Let n ≥ 1 and T : An+1
k → An+1

k be a linear change of coordinates (i.e. a linear automorphism

of kn+1). As it preserves lines through the origin it induces T : Pn
k → Pn

k , what we call a projective change of

coordinates.

1. Show, that one can send any n+1 points in Pn not lying on a hyperplane to any other n+1 points not lying

on a hyperplane via a linear change of coordinates.

2. Formulate and prove a similar statement for hyperplanes instead of points.

Solution 4.

1. Let S = {P1, . . . , Pn+1} be a set of n+ 1 points not lying on a hyperplane. It allows us to lift S to a k-basis

Ŝ of kn+1. Indeed, if there is a linear relation P̂n+1 =
∑

i aiP̂i. Consider H = V ect(P1, . . . , Pn) ⊂ kn+1.

H preserves lines so it induces a linear subspace h ⊂ Pn, contained in a hyperplane. Then S is contained

in h which contradicts the hypothesis. The same work for the target points, whose induced basis of kn+1 is

denoted T̂

Now, it suffices to take the matrix A ∈ GLn which sends Ŝ to T̂ . Using the short exact sequence

0 → k∗
λ7→λIn−→ GLn → PGLn → 0

we get the desired linear linear change of coordinate Ā ∈ PGLn

2. There is a duality isomorphism Pn ≃ (Pn)∗, where (Pn)∗ parametrises hyperplanes in Pn.

[y0, . . . , yn] 7→ H : y0X0 + · · ·+ ynYn = 0

The duality transform the condition ”n+ 1 points not lying on a hyperplane” into ”n+ 1 hyperplanes whose

(global) intersection is empty” We can verify it as follows. Let P = [x0, . . . , xn] ∈ ∩n
i=0hi with hi hyperplanes,

defined by the equation

hi : ai,0X0 + · · ·+ ai,nXn = 0

Now, we get

a0,0x0 + · · ·+ a0,nxn

. . .

an,0x0 + · · ·+ an,nxn
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Then the n+ 1 points Ai = [ai,0, . . . , ai,n] are all contained in the hyperplane

H : x0X0 + · · ·+ xnXn = 0

Exercise 5. Show that any two distinct lines in P2
k intersect in one point.

Solution 5. Let L and L′ be lines defined by the (homogenous) equation

ax+ by + cz = 0

a′x+ b′y + c′z = 0

Assume without lost of generality that a ̸= 0 and b′ ̸= −a−1b. Then, x = a−1(by + cz)

y =
−a−1c+ c′

a−1b+ b′
z

and similarly

x = (
−a−1c+ c′

a−1b+ b′
+ a−1c)z

This defines a unique point in P2
k.

Exercise 6. Let m,n ≥ 1 and N = (n+1)(m+1)− 1 = mn+m+n. We consider Pn
k with projective coordinates

X0, . . . , Xn, Pm
k with projective coordinates Y0, . . . , Ym and PN

k with projective coordinates T00, T01, . . . , T0m, T10, . . . , Tnm.

We also denote the affine coverings of Pn
k , Pm

k , PN
k associated to these coordinates as follows: Ui = {Xi ̸= 0},

Vj = {Yj ̸= 0} and Wij = {Tij ̸= 0}.
Define the Segre embedding S : Pn

k × Pm
k → PN

k by the formula:

S([x0 : . . . : xn], [y0 : . . . : ym]) = [x0y0 : x0y1 : . . . : xnym]

1. Show that S is well-defined and injective.

2. Let Z = V (TijTkl − TilTkj , 0 ≤ i, k ≤ n, 0 ≤ j, l ≤ m) ⊆ PN
k . Show that S(Pn

k × Pm
k ) = Z (more specifically,

S(Ui × Vj) = Z ∩Wij for all i, j).

3. Show that the topology induced on Pn
k ×Pm

k by the Zariski topology of PN
k via the Segre embedding is different

from the product topology.

Solution 6.

1. Well defined : the embedding is bilinear on each coefficient.

Injective : Assume S(x, y) = S(x′, y′). Without lost of generality, assume x0 = 1. Take j such that yj ̸= 0.

then x0yj = x′
0y

′
j ̸= 0. Then x′

0 = λ ̸= 0. Then for all i, y′i = λyi so y = y′. Apply the same argument to yj

to get x = x′.

2. If xi ̸= 0, yj ̸= 0 then S(x, y)ij = xiyj ̸= 0. Hence S(Ui ∩ Vj) ⊂ Wij .
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For the reverse inclusion, let z = [z00, z01, . . . , zmn] There is i, j such that zij ̸= 0. WLOG assume zij = 1.

Set for all i′,

xi′ = zi′j

and for all j′,

yj′ = zij′

Using that

zijzi′j′ = zi′jzij′

we get that zi′j′ = xi′yj′ . This shows Wij ⊂ S(Ui ∩ Vj).

3. We can mimic the familiar example of the diagonal in ∆ ⊂ X ×X, using the inclusion of one projective space

in another, i.e. Pn ↪→ Pm with n ≤ m. The image of this ”diagonal” is closed in the Zariski topology of PN
k

but not in the product topology.
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